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Abstract

We analyze a hybrid particle/continuum algorithm for a hydrodynamic system with long ranged

correlations. Specifically, we consider the so-called train model for viscous transport in gases, which is

based on a generalization of the random walk process for the diffusion of momentum. This discrete model

is coupled with its continuous counterpart, given by a pair of stochastic partial differential equations.

At the interface between the particle and continuum computations the coupling is by flux matching,

giving exact mass and momentum conservation. This methodology is an extension of our stochastic

Algorithm Refinement (AR) hybrid for simple diffusion [J. Comp. Phys. 182 47 (2002)]. Results from

a variety of numerical experiments are presented for steady-state scenarios. In all cases the mean and

variance of density and velocity are captured correctly by the stochastic hybrid algorithm. For a non-

stochastic version (i.e., using only deterministic continuum fluxes) the long-range correlations of velocity

fluctuations are qualitatively preserved but at reduced magnitude.

1 Introduction

Over the last decade, numerical methods that couple particle and continuum algorithms, commonly referred
to as Algorithm Refinement (AR), have been developed. These hybrid schemes reduce the computational
cost of simulating physical processes that span several length and time scales in gas [1]-[5], liquid [6]-[10],
solid [11]-[14], mixed phase [15], and reactive systems [16]. AR hybrids are ideal for simulating physical
systems in which some regions of space require a more detailed description of the physical phenomena than
other regions. An example is a gas flow with a region of strong shock. The gas flow can be modelled
accurately by the partial differential equations (PDE) of hydrodynamics (e.g., Navier-Stokes PDE) away
from the shock, but requires a kinetic level description, the Boltzmann (integro-differential) equation, in the
shock region. The basic idea of the AR hybrid approach is to carry out detailed calculations using the fine-
grained, typically expensive algorithm, only where absolutely required and then to couple this computation
to a coarse-grained, less expensive method, which is used in the rest of the spatial domain.

As these AR hybrids gain popularity in applications, it is important to understand their strengths and
weaknesses. This is especially true for stochastic, nonlinear systems, such as those undergoing phase transi-
tions, nucleation, noise driven instabilities, or chemical reactions. In these situations the nonlinearities can
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exponentially modify the strength of the fluctuations in the regions of interest. Furthermore, the magni-
tude of fluctuations can have have an exponential effect on the phenomenon of interest (e.g., first-passage
time [17]). For accurate modelling of these problems, one must ensure that the noise is properly generated,
propagated and dissipated. Particle methods and continuum methods treat noise in very different ways. In
particle systems the inherent dynamics creates spontaneous fluctuations, for example the density in a region
fluctuates as particles enter and leave. For continuum methods one typically has to solve a stochastic partial
differential equation containing the appropriate noise terms (e.g., see [18]). The challenge is to ensure that
the numerical method used to couple the particle and continuum computations does not adversely impact
the underlying physics.

This is the second in a series of papers dealing with the issue of noise in hybrids. In the first paper [19]
we concentrated on hybrids for linear processes, formulating a hybrid particle/continuum method for linear
(Fickian) diffusion. The particles (independent random walkers) were coupled to a fluctuating diffusion
equation. This equation was solved by finite difference methods with both deterministic and white-noise
fluxes. At the interface between the particle and continuum regions the coupling was carried out by flux
matching. This guaranteed strict mass conservation and yielded favorable numerical stability. Results from
a variety of computational experiments were presented for both steady-state and time-dependent scenarios.
In all cases the mean and variance of density were captured correctly by the stochastic AR hybrid. For a non-
stochastic version (i.e., using only deterministic continuum fluxes) the mean density was reproduced correctly,
but the variance was significantly under-estimated except in particle regions away from the interface.

While the first paper showed that particle/continuum AR hybrids could accurately model hydrodynamic
fluctuations for the case of simple diffusion this only gives us confidence in the methodology for linear systems.
While linear systems are important they do not exhibit certain phenomena, such as long range correlations
in the field variables. For highly nonlinear equations or for systems with more general multiplicative noises,
deterministic hybrids are not guaranteed to yield mean values that are correct across the coupling interface,
even in equilibrium. In these cases great care must be taken in the construction of the hybrid; renormalized
noises or effective potentials (from which the PDE is derived) may prove useful.

In this second paper we consider a system that intrinsically has long-range spatial correlations due to
the non-linearity of its stochastic fluxes. Specifically, we consider the train model [20] for viscous transport
in a gas. The train model is one of a general class of random walk models that exhibit these long-range
correlations; other models include lattice gases [21] and the Knudsen chain [22]. Furthermore, these long-
range correlations are generic to realistic hydrodynamic systems as predicted by a variety of theoretical
approaches and confirmed by numerical simulations and laboratory experiments [23, 24, 25].

The train model is chosen because the particle and continuum representations can be constructed ana-
lytically and solved numerically. The challenge is to formulate an AR hybrid that couples the particle and
continuum algorithms and show that it preserves the long-range correlations of velocity fluctuations found
in the train model. This is shown to be possible for an AR hybrid using a stochastic PDE for the continuum
portion of the simulation. Surprisingly, even when a deterministic PDE is used the qualitative nature of the
correlations is preserved, though at a reduced amplitude.

This paper is organized as follows: In section 2 we present the kinetic theory formulation of the train
model. Section 3 contains a description of the model in the continuum limit. Each of those sections also
presents simple schemes for numerically simulating the particle and continuum representations of the train
model. The Algorithm Refinement hybrid that couples the particle and continuum schemes is described in
Section 5. That section also presents the results of our numerical investigations of this hybrid, comparing
it with the continuum and particle simulations as well as with the theoretical results obtained in Section 4.
We conclude in Section 6 with a recap of our results and implications for hybrids for correlated systems.
Appendix A contains algebraic expressions for various cross-correlation terms. Appendix B is the errata for
[19].
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2 Discrete Train Model

Consider the following simple model, attributed to Tait [20], for viscous transport in a gas. Two railroad cars
travel alongside each other on parallel tracks with initial velocities va and vb. The train cars initially have
Na and Nb passengers, respectively; the passengers have mass m while the mass of the cars is negligible.
Passengers jump at random between the trains at a rate 1/τ , where τ is the mean free time between a
passenger’s jumps to an adjacent train. When a passenger jumps from train a to train b, the exchange of
momentum is mva, so that the trains’ new velocities are

v′a =
mNava −mva

m(Na − 1)
= va; v′b =

mNbvb + mva

m(Nb + 1)
=

Nb

Nb + 1
vb +

1
Nb + 1

va. (1)

Similar to the Ehrenfest dog-flea model [26, 27], this random process reaches a steady state in the long time
limit. Specifically, symmetry and conservation considerations show that the mean number of passengers on
each train car at steady state is (Na + Nb)/2, and the mean velocity is (Nava + Nbvb)/(Na + Nb).

The train model is more interesting when we consider a set of cars on M parallel tracks, as shown in Fig. 1.
Passengers on the trains jump left or right with equal probability, as in the unbiased random walk. Adjacent
to the first and last tracks are “platforms” moving with constant numbers of passengers, N0 and NM+1, at
constant velocities, v0 and vM+1; these platforms act as reservoirs of passengers. Note that passengers on
the platforms jump at half the rate of train passengers since they can only jump in one direction. At the
steady state, the mean number of passengers on a train is 〈Ni〉 = N0 + (NM+1 −N0) i/(M + 1), that is, a
linear profile. The mean velocity is

〈vi〉 =
〈Nivi〉
〈Ni〉

=
N0v0 + (NM+1vM+1 −N0v0) i/(M + 1)

N0 + (NM+1 −N0) i/(M + 1)
, (2)

since the mean momentum profile is linear. Note that if the platforms have equal numbers of passengers
then the velocity profile is also linear, as in Couette shear flow.

Our interest in this model lies in its fluctuations in general, and in the long-range correlations of velocity
fluctuations in particular. An earlier study of this model [28] demonstrated that these correlations are long-
ranged and very similar to those observed in a dilute gas under shear [24]. Specifically, when the mean
density is constant (i.e., N0 = NM+1) this correlation is piece-wise linear,

〈δviδvj〉 =
(vM+1 − v0)2

N0(M + 1)3

{
i (M + 1− j) i ≤ j

j (M + 1− i) i > j.
(3)

When N0 6= NM+1, the correlations are also long-ranged but have a more complicated form (see Section 4).
Similar long-range correlations of fluctuations are observed in a dilute gas subjected to a shear [24] as well
as many other non-equilibrium systems [23].

The train model is very simple to simulate numerically, being only slightly more complicated than the
basic random walk. Starting from an initial state, a random passenger is chosen to jump in a random
direction. A passenger jumping onto a train changes the velocity of that train. If the passenger jumps from
a platform onto a train, a new passenger is added to the system; vice versa a passenger is removed. After
each jump the time is advanced by (τ/NΣ)<e, where NΣ is the total number of passengers in the system
and <e is an exponentially distributed random number. This algorithm is discussed in further detail in [28]

3 Continuum Train Model

The train model, as presented in the previous section, is a discrete random-walk process. As our interest
is in particle/continuum hybrids, the next step is to formulate the continuum train model and a numerical
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Figure 1: Schematic illustration of the train model with M trains plus two platforms. A passenger on train
i− 1 is shown jumping to train i, which changes velocity vi.

scheme for solving the resulting SPDE. We start with the following general expressions for the continuum
PDEs for the train model,

∂ρ

∂t
= − ∂

∂x
F (ρ);

∂p

∂t
= − ∂

∂x
G(ρ, v) (4)

where ρ(x, t) is the mass density, F is the mass flux, p(x, t) is the momentum, G is the momentum flux, and
v = p/ρ is the fluid velocity. These equations arise from the continuum limit of the integral construction of
flux conservation. Stepping back to this more fundamental construction, we formulate the density equation
as

ρi;n+1 − ρi;n

∆t
= −

(
(F+→

i;n − F+←
i;n )− (F−→i;n − F−←i;n )

∆x

)
, (5)

where ρi;n = ρ(xi, tn) with xi = (i− 1
2 )∆x, i = 1, . . . ,M , and tn = n∆t, n = 0, 1, . . .. The superscript + (or

−) indicates that the flux is through the side between cells i and i + 1 (or i− 1); the superscript → (or ←)
indicates that the term is the flux contribution due to particles moving left-to-right (or right-to-left). Note
that if we associate a grid point with a single discrete train then Ni = ρi∆x/m.

Similarly, the discretization for the momentum equation gives,

pi;n+1 − pi;n

∆t
= −

(
(G+→

i;n −G+←
i;n )− (G−→i;n −G−←i;n )

∆x

)
(6)

These equations are discretized in a slightly different fashion than in [19] where we used F+
i;n = F+→

i;n −
F+←

i;n and F−i;n = F−→i;n − F−←i;n . The reason for introducing this more complicated construction is that
the momentum fluxes cannot be specified by our previous construction. Specifically, particles crossing an
interface from left-to-right carry a different momentum from those going right-to-left (i.e., mass diffusion is
simpler since particles always carry the same mass regardless of where they come from).

The discretized mass fluxes are

F+←
i;n = Dρi+1;n/∆x + f+←

i;n F+→
i;n = Dρi;n/∆x + f+→

i;n (7)

F−←i;n = Dρi;n/∆x + f−←i;n F−→i;n = Dρi−1;n/∆x + f−→i;n (8)
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where F+←
i;n = F−←i+1;n. and F+→

i;n = F−→i+1;n. The correlations of the noise terms in (7) – (8) are given by

〈f+←
i;n f+←

j;m 〉 =
Ai+1;nδi,jδn,m

2∆x∆t
, 〈f−→i;n f−→j;m 〉 =

Ai−1;nδi,jδn,m

2∆x∆t
, (9)

and
〈f+→

i;n f+→
j;m 〉 = 〈f−←i;n f−←j;m 〉 =

Ai;nδi,jδn,m

2∆x∆t
. (10)

Analogous expressions hold for f+←
i;n = f−←i+1;n and f+→

i;n = f−→i+1;n, with all other combinations being zero
(e.g., 〈f+→

i;n f+←
j;n 〉 = 0). Note that this construction agrees with our previous formulation since

〈f+
i;nf+

j;m〉 = 〈f+→
i;n f+→

j;m 〉+ 〈f
+←
i;n f+←

j;m 〉 =
(Ai;n + Ai+1;n)δi,jδn,m

2∆x∆t
(11)

and

〈f−i;nf−j;m〉 = 〈f−→i;n f−→j;m 〉+ 〈f
−←
i;n f−←j;m 〉 =

(Ai;n + Ai−1;n)δi,jδn,m

2∆x∆t
. (12)

Matching the variance of density fluctuations at equilibrium fixes the amplitude to be Ai;n = 2Dρi;n.
Substituting these expressions into (5) yields

ρi;n+1 − ρi;n

∆t
= D

ρi+1;n + ρi−1;n − 2ρi;n

∆x2
−

(f+→
i;n − f+←

i;n )− (f−→i;n − f−←i;n )
∆x

. (13)

Using f+←
i;n = f−←i+1;n and f+→

i;n = f−→i+1;n, this may be written as

ρi;n+1 − ρi;n

∆t
= D

ρi+1;n + ρi−1;n − 2ρi;n

∆x2
−

(
f−←i;n − f−←i+1;n

∆x
−

f+→
i−1;n − f+→

i;n

∆x

)
. (14)

The steady state density, ρi, is obtain from

D
ρi+1 + ρi−1 − 2ρi

∆x2
= 0 (15)

which implies that it is linear.
The momentum fluxes are closely related to the mass fluxes. Specifically,

G+←
i;n = vi+1;nF+←

i;n ; G+→
i;n = vi;nF+→

i;n ; G−←i;n = vi;nF−←i;n ; G−→i;n = vi−1;nF−→i;n . (16)

As with the formulation for the density, we may write (6) as

pi;n+1 − pi;n

∆t
= D

ρi+1;nvi+1;n + ρi−1;nvi−1;n − 2ρi;nvi;n

∆x2

−
(vi;nf+→

i;n − vi+1;nf+←
i;n )− (vi−1;nf−→i;n − vi;nf−←i;n )

∆x
, (17)

or

pi;n+1 − pi;n

∆t
= D

ρi+1;nvi+1;n + ρi−1;nvi−1;n − 2ρi;nvi;n

∆x2

−

(
vi;nf−←i;n − vi+1;nf−←i+1;n

∆x
−

vi−1;nf+→
i−1;n − vi;nf+→

i;n

∆x

)
(18)

Since pi = ρivi, the steady state momentum is linear and vi = pi/ρi is linear if the density is constant.
These discrete equations take the following continuous form as ∆x,∆t→ 0,

∂ρ

∂t
= D

∂2ρ

∂x2
+

∂f−←

∂x
− ∂f+→

∂x
,

∂p

∂t
= D

∂2ρv

∂x2
+

∂vf−←

∂x
− ∂vf+→

∂x
(19)
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If we define f = f+→ − f−← then

∂ρ

∂t
= D

∂2ρ

∂x2
− ∂f

∂x
,

∂p

∂t
= D

∂2ρv

∂x2
− ∂vf

∂x
(20)

Using p = ρv, we obtain the following equation for velocity,

ρ
∂v

∂t
= 2D

∂ρ

∂x

∂v

∂x
+ Dρ

∂2v

∂x2
− ∂vf

∂x
(21)

Note that when f ≡ 0 and the density is constant, this equation reduces to

∂v

∂t
= D

∂2v

∂x2
, (22)

which gives the linear Navier-Stokes equation for shear flow.
Finally, we may use eqn. (14) to formulate the numerical scheme,

ρi;n+1 = ρi;n +
D∆t

∆x2
(ρi+1;n + ρi−1;n − 2ρi;n) +

∆t

∆x

(
f−←i+1;n − f−←i;n − f+→

i;n + f+→
i−1;n

)
(23)

where the stochastic terms are evaluated numerically using

f−←i;n =

√
Dρi;n

∆x∆t
<i;n; f+→

i;n =

√
Dρi;n

∆x∆t
<′i;n (24)

where <i;n and <′i;n are independent, Gaussian distributed, random variables with zero mean and unit
variance. Similarly, for momentum,

pi;n+1 = pi;n +
D∆t

∆x2
(ρi+1;nvi+1;n + ρi−1;nvi−1;n − 2ρi;nvi;n)

+
∆t

∆x

(
vi+1;nf−←i+1;n − vi;nf−←i;n − vi;nf+→

i;n + vi−1;nf+→
i−1;n

)
(25)

Note that this numerical scheme is a generalization of that presented in [19]. In the deterministic case
(f = 0) the scheme is known as Forward-Time-Centered-Space (FTCS) and has a maximum stable time step
of ∆tmax = ∆x2/2D. [29]

Finally, we note that for the purpose of implementing an Algorithm Refinement hybrid, as presented in
Section 5, it is useful to formulate the numerical schemes above as

ρi;n+1 = ρi;n −
∆t

∆x

[
(F+→

i;n − F+←
i;n )− (F−→i;n − F−←i;n )

]
, (26)

pi;n+1 = pi;n −
∆t

∆x

[
(G+→

i;n −G+←
i;n )− (G−→i;n −G−←i;n )

]
(27)

where the fluxes are given by eqs. (7), (8), and (16).

4 Correlations of Fluctuations

The discretized construction of the previous section may be used to obtain the equal-time correlations of
fluctuations 〈δρiδρj〉, 〈δρiδvj〉, and 〈δviδvj〉. First, consider the density correlation; taking Equation ( 23),
we may write an expression for the density fluctuation δρi = ρi;n − ρi as

δρ′i = δρi +
D∆t

∆x2
(δρi+1 + δρi−1 − 2δρi) +

∆t

∆x
(f+←

i − f+→
i − f−←i + f−→i ) (28)

where prime indicates the new value at n + 1. We square both sides and take an average to get

〈δρ′iδρ′j〉 = 〈δρiδρj〉+ T ρρ
1 + T ρρ

2 + T ρρ
3 (29)
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Figure 2: Density correlation 〈ρiρj〉 as function of i for j = 6 (circles) and j = 15 (crosses) as from (29) for
a linear density gradient (ρ0 = 50, ρM+1 = 150). Left graph is ∆t = ∆tmax/2; right is ∆t = ∆tmax/20. In
limit ∆t → 0 correlation 〈δρiδρj〉 = (ρi/∆x)δij (solid and dashed lines). Parameters are: D = 1, ∆x = 1,
M = 21, ∆tmax = ∆x2/2D.

where T ρρ
1 , T ρρ

2 , and T ρρ
3 are given by (45) in Appendix A.

Expression (29) may be used as the basis for a relaxation scheme [29] to evaluate 〈δρiδρj〉. In the limit
∆t→ 0 the terms of O(C2), where C = D∆t/∆x2, vanish and the correlation of the density fluctuations may
be obtained by directly solving T ρρ

1 + T ρρ
3 = 0, or,

(〈δρiδρj+1〉+ 〈δρiδρj−1〉+ 〈δρi+1δρj〉+ 〈δρi−1δρj〉 − 4〈δρiδρj〉)

+
1

∆x

(
(ρi+1 + ρi−1 + 2ρi)δi,j − (ρi+1 + ρi)δi+1,j − (ρi−1 + ρi)δi−1,j

)
= 0 (30)

giving 〈δρiδρj〉 = ρiδij/∆x as may be verified by direct substitution. For finite ∆t, the result obtained from
relaxation of the full expression is not much different (see Fig. 2).

Next we consider the density-velocity correlation. The starting point is to identify δpi = pi;n − pi =
ρiδvi + viδρi and write (25) as

δρ′jvj + ρjδv
′
j = δρjvj + ρjδvj

+
D∆t

∆x2
(vj+1δρj+1 + vj−1δρj−1 − 2vjδρj) (31)

+
D∆t

∆x2
(ρj+1δvj+1 + ρj−1δvj−1 − 2ρjδvj)

+
∆t

∆x
(vj+1f

+←
j − vjf

+→
j − vjf

−←
j + vj−1f

−→
j )

Taking the product of the above expression with (28) and averaging gives

vj〈δρ′iδρ′j〉+ ρj〈δρ′iδv′j〉 = vj〈δρiδρj〉+ ρj〈δρiδvj〉+ T ρv
1 + T ρv

2 + T ρv
3 + T ρv

4 + T ρv
5 + T ρv

6 (32)

where T ρv
l (l = 1, . . . , 6) are given by (46) in Appendix B. Taking 〈δρ′iδρ′j〉 = 〈δρiδρj〉 as given,

〈δρ′iδv′j〉 = 〈δρiδvj〉+
1
ρj

(T ρv
1 + T ρv

2 + T ρv
3 + T ρv

4 + T ρv
5 + T ρv

6 ) (33)

which may be solved numerically by iterative relaxation to obtain 〈δρiδvj〉. In the limit ∆t → 0 the above
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Figure 3: Correlation 〈δρiδvj〉 for the boundary conditions ρ0 = 50, ρM+1 = 150, v0 = 0, vM+1 = 1. Left
graph is ∆t = ∆tmax/2; right is ∆t = ∆tmax/20. In limit ∆t → 0 correlation 〈δρiδvj〉 = 0 (solid line).
Parameters are as in Fig. 2.

simplifies to T ρv
1 + T ρv

2 + T ρv
3 + T ρv

6 = 0 which may be written as

ρivi

∆x
(δi,j+1 + δi,j−1 − 2δi,j) + (ρj+1〈δρiδvj+1〉+ ρj−1〈δρiδvj−1〉 − 2ρj〈δρiδvj〉)

+
vjρj

∆x
(δi+1,j + δi−1,j − 2δi,j) + ρj(〈δρi+1δvj〉+ 〈δρi−1δvj〉 − 2〈δρiδvj〉) (34)

+
1

∆x

(
vj+1ρi+1δi,j − vjρi+1δi+1,j + vjρiδi,j − vj−1ρiδi+1,j

− vj+1ρiδi−1,j + vjρiδi,j − vjρi−1δi−1,j + vj−1ρi−1δi,j

)
= 0

which gives 〈δρiδvj〉 = 0. For finite ∆t there is a small, non-zero contribution which is associated with the
truncation error of the numerical scheme. From Fig. 3 that the this truncation error is O(∆t).

Finally, let us evaluate the velocity-velocity correlation; the procedure is similar with the starting point
of (31). The algebra is tedious but straight-forward. First, the left hand side is〈

(δρ′ivi + ρiδv
′
i)
(
δρ′jvj + ρjδv

′
j

)〉
= vjvi〈δρ′iδρ′j〉+ ρiρj〈δv′iδv′j〉+ viρj〈δρ′iδv′j〉+ ρivj〈δv′iδρ′j〉 (35)

As before, we take 〈δρ′iδρ′j〉 = 〈δρiδρj〉, cancelling this term on each side and similarly for the matching
〈δρδv〉 terms that appear on both sides. The right hand side may be written as

vjvi〈δρiδρj〉+ ρiρj〈δviδvj〉+ viρj〈δρiδvj〉+ ρivj〈δviδρj〉+
8∑

l=1

T vv
l , (36)

where T vv
l (l = 1, . . . , 8) are given by (47) in Appendix A. This gives us a relaxation expression,

〈δv′iδv′j〉 = 〈δviδvj〉+
1

ρiρj

8∑
l=1

T vv
l . (37)

Results from relaxation are shown in Fig. 4. In the limit ∆t → 0 we may drop the terms T vv
3 , T vv

4 , T vv
6 ,
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Figure 4: Correlation 〈δviδvj〉 obtained by relaxation; parameters are as in Fig. 3. Left graph is ∆t =
∆tmax/2; right is ∆t = ∆tmax/20. Result for limit ∆t→ 0 are dashed lines.

T vv
7 , and T vv

8 and write the remaining terms as

〈δv′iδv′j〉 = 〈δviδvj〉+
C

ρiρj

[
1

∆x
ρiv

2
i (δi,j+1 + δi,j−1 − 2δi,j)

+
1

∆x
ρjv

2
j (δi+1,j + δi−1,j − 2δi,j) + ρi(ρj+1〈δviδvj+1〉+ ρj−1〈δviδvj−1〉 − 2ρj〈δviδvj〉)

+ρj(ρi+1〈δvi+1δvj〉+ ρi−1〈δvi−1δvj〉 − 2ρi〈δviδvj〉) (38)

+
1

∆x

(
vi+1vj+1ρi+1δi,j − vi+1vjρi+1δi+1,j + vivjρiδi,j − vivj−1ρiδi+1,j

−vivj+1ρiδi−1,j + vivjρiδi,j − vi−1vjρi−1δi−1,j + vi−1vj−1ρi−1δi,j

) ]

The expressions are still complicated but easily solved by relaxation yielding the results shown in Fig. 4 for
the case of both density and velocity gradients. The case of only a velocity gradient the results are in perfect
agreement with (3).

5 Algorithm Refinement Hybrid

The train model is most easily understood as a random walk model, which is how it is simulated as a particle
system (see section 2). As described in section 3, the train model may also be simulated as a continuum
system whose stochastic PDE is integrated in time by generating the deterministic and white-noise fluxes. We
now consider how the two formulations may be coupled as a particle/continuum hybrid. As mentioned in the
introduction, this type of hybrid computation that combines two distinctly different algorithmic approaches
that model the same physical process is commonly known as Algorithm Refinement (AR). The present AR
hybrid for the train model is validated by comparing with conventional particle and continuum simulations
as well as with the predicted correlations obtained in the previous section.

Figure 5 illustrates the geometry used in our AR hybrid with a particle simulation on the left side and a
continuum computation on the right. For simplicity we take the continuum grid spacing, ∆x, equal to the
particle grid spacing (width of a train).
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Figure 5: Algorithm Refinement hybrid for the train model. The particle simulation is performed in the
region on the left (from 0 to I − 1) and a PDE solver is used on the right (I to M); the methods are coupled
at the interface. For the particle algorithm, new particles (open circles) are generated in the “handshaking”
region (cell k) and at the Dirichlet boundary (left platform). For the continuum algorithm the fluxes F−←I;n ,
F−→I;n G−←I;n , and G−→I;n (i.e., between cells I − 1 and k) are obtained from the particle computation.
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At the beginning of a time step, the particle region is extended by one grid point into the continuum
region. This added “handshaking” region is filled with particles according to the density of the underlying
grid point such that 〈NI;n〉 = ρI;n∆x/m. In addition, each particle is given the same velocity of the train,
namely, vI . All particles, in the handshaking region and elsewhere, are then evolved for a time ∆t using the
random walk dynamics outlined in section 2. The total number and total momentum for particles jumping
left and right across the interface are recorded and used in the continuum portion of the computation (see
below). Any particles that move outside the particle region are removed from the simulation.

Once the particle update is complete, (7), (8), (16), and (24) are used to compute the density and
momentum fluxes for each continuum grid point except for the grid point adjacent to the particle region.
For that point, the fluxes recorded during the particles’ motion is used instead of F−←I;n , F−→I;n G−←I;n , and
G−→I;n . Given the fluxes, each continuum grid point is updated using (26) and (27), which completes one time
step for the hybrid. Note that the coupling exactly conserves mass and momentum as the fluxes of these
quantities across the interface are synchronized to be the same for the two algorithms.

The boundary conditions fix the density and velocity of the first and last grid point (i.e., a “platform”).
When this grid point is simulated with particles, then it is a reservoir with particles immediately replenished
(or removed) as they leave (or enter). We consider two cases: (1) a velocity gradient only and (2) both
density and velocity gradients. The case of a density gradient only is equivalent to our earlier study [19] of
simple diffusion. In both of the present cases there are long range correlations of the velocity fluctuations
〈δviδvj〉, as shown in Section 4.

A variety of simulations were run to illustrate the performance of the AR hybrid. In all cases the
simulations were executed 108 steps using a time step of ∆t = ∆tmax/20 = 0.025. Both stochastic and non-
stochastic (i.e., deterministic) PDE solvers were tested. In the former, the noise amplitude is computed using
(24); in the latter, f±↔i;n = 0. The deterministic method is similar to that used earlier in particle/continuum
hybrids for fluid mechanics (e.g., the DSMC/Euler hybrid in [3]).

First we consider the AR hybrid using a stochastic PDE solver. Figure 6 shows that for the mean values
of the density and velocity the simulations using a pure particle, a pure continuum, and the AR hybrid are
all in excellent agreement with the expected results of a linear density profile and a velocity profile given by
eqn. (2).

The correlation of velocity fluctuations is also in good agreement for all three numerical approaches;
see Fig. 7 for the case of only a velocity gradient and Fig. 8 for the case of both a velocity and density
gradient. These results indicate that the AR hybrid correctly captures the long-ranged nature of these
non-equilibrium fluctuations. This is a significant result since these long-range correlations are generic to
hydrodynamic systems out of global equilibrium [23].

We now consider the AR hybrid using a deterministic PDE solver. Again the mean values of the density
and velocity for this hybrid are in perfect agreement with the theory (see Fig. 9). What is most interesting
are the results for the correlation of velocity fluctuations shown in Fig. 10 for the case of only a velocity
gradient and Fig. 11 for the case of both a velocity and density gradient. The amplitude of the 〈δviδvj〉
correlations is roughly reduced by half due to the absence of noise in half the system (i.e., the deterministic
PDE side) yet the correlations are still long-ranged, spanning the length of the system.

This result is in contrast with the findings in our previous study [19] of linear diffusion in which we
showed that the variance of density fluctuations, 〈(δρi)2〉, went quickly to zero in the deterministic region of
the simulation. However there is no contradiction since the long-range nature of hydrodynamic correlations
is not due to the presence of noise throughout the system. Rather, it is the hydrodynamic transport that
propagates the correlation and this transport is correctly computed by the hybrid, as demonstrated by the
correct profiles of mean density and velocity shown in Fig. 9). In other words, local fluctuations are produced
in the particle region and propagated by the hydrodynamic transport, which in the train model is purely
viscous, to produce the correlations.

In brief, the effect of long-ranged correlations is still present, albeit at a reduced amplitude, even if only
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Figure 6: Mean density (left) and velocity (right) as functions of position for a system of M = 21 trains
with boundary conditions ρ0 = 50, ρM+1 = 150, v0 = 0, and v22 = 1. Simulations are pure particle (circle),
pure stochastic PDE (cross), and hybrid of particles/stochastic PDE (asterisk); theory (solid line) is linear
density and eqn. (2). Dashed line indicates the interface location for the hybrid simulation.
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Figure 7: Velocity-velocity correlation 〈δviδvj〉 as functions of position i for j = 6 (left) and j = 15 (right).
Parameters and symbols are as in Fig. 6 except that ρ0 = ρM+1 = 100 (i.e., velocity gradient only). Solid
line is theoretical result given by (3).

12



0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−4

Cell

<v
i v

j>,
 i=

6

Particles
Continuum
Hybrid
Theory

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−5

Cell

<v
i v

j>,
 i=

15

Particles
Continuum
Hybrid
Theory

Figure 8: Velocity-velocity correlation 〈δρiδρj〉 as functions of position i for j = 6 (left) and j = 15 (right).
Parameters and symbols are as in Fig. 6. Solid line is theoretical result given by (38) solved by relaxation.

one part of the hybrid is stochastic. On one hand, this result is good news since it means that even when using
a deterministic PDE solver, which is far more commonly the case for AR hybrids, some of the qualitative
features of long-ranged correlations are preserved. On the other hand, a reduction (or for that matter, an
enhancement) of the fluctuations by a factor of two can lead to a greatly altered time-dependent behavior.
This is a serious concern for modelling noise-driven phenomena where fluctuations and their correlations
are often exponentially amplified (first-passage time problems, spontaneous transitions at unstable points,
explosive ignition, etc.). Clearly, the nature of the physical process and the relative importance of fluctuations
to the correct modelling of that process govern the construction of stochastic and deterministic Algorithm
Refinement hybrids.

6 Concluding Remarks

In this paper we investigate an Algorithm Refinement hybrid of a simple hydrodynamic model. Our study
focused on static (i.e., equal-time) correlations of velocity fluctuations since they are long-ranged when the
system is out of equilibrium, a generic feature of fluctuating hydrodynamics [23]. Hybrids that capture
static correlations correctly are expected to do well in reproducing dynamic correlations since the latter
are given by the former plus hydrodynamic transport. That said, it would still be interesting to confirm
this expectation by measuring time dependent correlations in AR hybrids and comparing the results with
pure particle systems. For some physical problems generating time dependent fluctuations and correlations
correctly will be crucial for accuracy.

Our future work will focus on strongly nonlinear systems. We are currently investigating an AR hybrid
that combines the fluctuating Navier-Stokes equations with Direct Simulation Monte Carlo (DSMC). Besides
the long-range correlations of the form considered in the present work, there are hydrodynamic correlations
perpendicular to imposed gradients [25] that can be measured to verify the accuracy of the scheme. Another
way to test the accuracy of this hybrid would be to measure the statistical properties of hydrodynamic
instabilities (e.g., onset time for Rayleigh-Benard convection) and validate the results by comparison with
a pure DSMC simulation. Parallel to this work we are investigating AR hybrids for the time-dependent
Ginzburg-Landau equation (and variants). As the physical problems, mathematical models, and numerical
schemes become increasingly more complex and non-linear, it becomes increasingly evident how important
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Figure 9: Mean density (left) and velocity (right) as functions of position; same as Fig. 6 except hybrid uses
a deterministic PDE solver for the right-hand side of the system.
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Figure 10: Velocity-velocity correlation 〈δviδvj〉 as functions of position i for j = 6 (left) and j = 15 (right).
Hybrid uses a deterministic PDE solver for the right-hand side of the system; all else is as in Fig. 7.
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Figure 11: Velocity-velocity correlation 〈δρiδρj〉 as functions of position i for j = 6 (left) and j = 15 (right).
Hybrid uses a deterministic PDE solver for the right-hand side of the system; all else is as in Fig. 8.

it is to establish a foundation based on simple systems such as the random walk.
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Appendix A: Details of Correlation Calculation

To evaluate the expressions for the correlations one makes use of the relations,

〈δρif
±↔
j 〉 = 〈δvif

±↔
j 〉 = 〈f±←i f±→j 〉 = 〈f±←i f∓→j 〉 = 0 (39)

The variances of the stochastic fluxes out of i are

〈f+→
i f+→

j 〉 = 〈f−←i f−←j 〉 =
Dρiδi,j

∆x∆t
(40)

The other variances are found using the relations

f+→
i−1 = f−→i f+→

i = f−→i+1 f+←
i−1 = f−←i f+←

i = f−←i+1 (41)

so
〈f+←

i f+←
j 〉 =

Dρi+1δi,j

∆x∆t
〈f−→i f−→j 〉 =

Dρi−1δi,j

∆x∆t
(42)

〈f+←
i f−←j 〉 =

Dρi+1δi+1,j

∆x∆t
〈f−←i f+←

j 〉 =
Dρiδi−1,j

∆x∆t
(43)

〈f+→
i f−→j 〉 =

Dρiδi+1,j

∆x∆t
〈f−→i f+→

j 〉 =
Dρi−1δi−1,j

∆x∆t
(44)
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Finally, the boundary conditions are 〈δρ0δρj〉 = 〈δρM+1δρj〉 = 0 since the platforms are at fixed mean
density with equal-time fluctuations that are independent of the fluctuations in the rest of the system.

The terms T ρρ
1 , T ρρ

2 , and T ρρ
3 in (29) are given by

T ρρ
1 =

〈
δρi

(
D∆t

∆x2
(δρj+1 + δρj−1 − 2δρj)

)〉
+
〈

δρj

(
D∆t

∆x2
(δρi+1 + δρi−1 − 2δρi)

)〉
= C(〈δρiδρj+1〉+ 〈δρiδρj−1〉+ 〈δρi+1δρj〉+ 〈δρi−1δρj〉 − 4〈δρiδρj〉), (45a)

T ρρ
2 =

〈(
D∆t

∆x2
(δρi+1 + δρi−1 − 2δρi)

)(
D∆t

∆x2
(δρj+1 + δρj−1 − 2δρj)

)〉
= C2(〈δρi+1δρj+1〉+ 〈δρi−1δρj+1〉 − 2〈δρiδρj+1〉+ 〈δρi+1δρj−1〉+ 〈δρi−1δρj−1〉
−2〈δρiδρj−1〉 − 2〈δρi+1δρj〉 − 2〈δρi−1δρj〉+ 4〈δρiδρj〉), (45b)

and

T ρρ
3 =

〈(
−∆t

∆x
(f+←

i − f+→
i − f−←i + f−→i )

)(
−∆t

∆x
(f+←

j − f+→
j − f−←j + f−→j )

)〉
=

C
∆x

(
(ρi+1 + ρi−1 + 2ρi)δi,j − (ρi+1 + ρi)δi+1,j − (ρi−1 + ρi)δi−1,j

)
(45c)

where C = D∆t/∆x2.
The terms T ρv

l (l = 1, . . . , 6) in (33) are given by

T ρv
1 =

D∆t

∆x2
〈δρi (vj+1δρj+1 + vj−1δρj−1 − 2vjδρj)〉

= C(vj+1〈δρiδρj+1〉+ vj−1〈δρiδρj−1〉 − 2vj〈δρiδρj〉), (46a)

T ρv
2 =

D∆t

∆x2

〈
δρi

(
ρj+1δvj+1 + ρj−1δvj−1 − 2ρjδvj

)〉
= C(ρj+1〈δρiδvj+1〉+ ρj−1〈δρiδvj−1〉 − 2ρj〈δρiδvj〉), (46b)

T ρv
3 =

D∆t

∆x2

〈
(δρi+1 + δρi−1 − 2δρi)(δρjvj + ρjδvj)

〉
= Cvj(〈δρi+1δρj〉+ 〈δρi−1δρj〉 − 2〈δρiδρj〉)

+Cρj(〈δρi+1δvj〉+ 〈δρi−1δvj〉 − 2〈δρiδvj〉), (46c)

T ρv
4 =

(
D∆t

∆x2

)2

〈(δρi+1 + δρi−1 − 2δρi)(vj+1δρj+1 + vj−1δρj−1 − 2vjδρj)〉

= C2
{

vj+1(〈δρi+1δρj+1〉+ 〈δρi−1δρj+1〉 − 2〈δρiδρj+1〉)

+vj−1(〈δρi+1δρj−1〉+ 〈δρi−1δρj−1〉 − 2〈δρiδρj−1〉)

−2vj(〈δρi+1δρj〉+ 〈δρi−1δρj〉 − 2〈δρiδρj〉)
}

, (46d)

T ρv
5 =

(
D∆t

∆x2

)2 〈
(δρi+1 + δρi−1 − 2δρi)(ρj+1δvj+1 + ρj−1δvj−1 − 2ρjδvj)

〉
= C2

{
ρj+1(〈δρi+1δvj+1〉+ 〈δρi−1δvj+1〉 − 2〈δρiδvj+1〉)

+ρj−1(〈δρi+1δvj−1〉+ 〈δρi−1δvj−1〉 − 2〈δρiδvj−1〉)
−2ρj(〈δρi+1δvj〉+ 〈δρi−1δvj〉 − 2〈δρiδvj〉), (46e)
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and

T ρv
6 =

(
∆t

∆x

)2 〈
(f+←

i − f+→
i − f−←i + f−→i )(vj+1f

+←
j − vjf

+→
j − vjf

−←
j + vj−1f

−→
j )

〉
=

C
∆x

(
vj+1ρi+1δi,j − vjρi+1δi+1,j + vjρiδi,j − vj−1ρiδi+1,j

−vj+1ρiδi−1,j + vjρiδi,j − vjρi−1δi−1,j + vj−1ρi−1δi,j

)
. (46f)

Finally, the terms in (36) are given by

T vv
1 =

〈
(δρivi)

(
D∆t

∆x2
(vj+1δρj+1 + vj−1δρj−1 − 2vjδρj)

)〉
+
〈

(δρjvj)
(

D∆t

∆x2
(vi+1δρi+1 + vi−1δρi−1 − 2viδρi)

)〉
= Cvi ((vj+1〈δρiδρj+1〉+ vj−1〈δρiδρj−1〉 − 2vj〈δρiδρj)〉)

+Cvj ((vi+1〈δρi+1δρj〉+ vi−1〈δρi−1δρj〉 − 2vi〈δρiδρj)〉) , (47a)

T vv
2 =

〈
(ρiδvi)

(
D∆t

∆x2
(ρj+1δvj+1 + ρj−1δvj−1 − 2ρjδvj)

)〉
+
〈

(ρjδvj)
(

D∆t

∆x2
(ρi+1δvi+1 + ρi−1δvi−1 − 2ρiδvi)

)〉
= Cρi(ρj+1〈δviδvj+1〉+ ρj−1〈δviδvj−1〉 − 2ρj〈δviδvj〉)

+Cρj(ρi+1〈δvi+1δvj〉+ ρi−1〈δvi−1δvj〉 − 2ρi〈δviδvj〉), (47b)

T vv
3 =

〈(
D∆t

∆x2
(vi+1δρi+1 + vi−1δρi−1 − 2viδρi)

)(
D∆t

∆x2
(vj+1δρj+1 + vj−1δρj−1 − 2vjδρj)

)〉
= C2vi+1(vj+1〈δρi+1δρj+1〉+ vj−1〈δρi+1δρj−1〉 − 2vj〈δρi+1δρj〉)

+C2vi−1(vj+1〈δρi−1δρj+1〉+ vj−1〈δρi−1δρj−1〉 − 2vj〈δρi−1δρj〉)
−2C2vi(vj+1〈δρiδρj+1〉+ vj−1〈δρiδρj−1〉 − 2vj〈δρiδρj〉), (47c)

T vv
4 =

〈(
D∆t

∆x2
(ρi+1δvi+1 + ρi−1δvi−1 − 2ρiδvi)

)(
D∆t

∆x2
(ρj+1δvj+1 + ρj−1δvj−1 − 2ρjδvj)

)〉
= C2ρi+1(ρj+1〈δvi+1δvj+1〉+ ρj−1〈δvi+1δvj−1〉 − 2ρj〈δvi+1δvj〉)

+C2ρi−1(ρj+1〈δvi−1δvj+1〉+ ρj−1〈δvi−1δvj−1〉 − 2ρj〈δvi−1δvj〉)
−2C2ρi−1(ρj+1〈δviδvj+1〉+ ρj−1〈δviδvj−1〉 − 2ρj〈δviδvj〉), (47d)

T vv
5 =

〈(
∆t

∆x
(vi+1f

+←
i − vif

+→
i − vif

−←
i + vi−1f

−→
i )

)
×
(

∆t

∆x
(vj+1f

+←
j − vjf

+→
j − vjf

−←
j + vj−1f

−→
j )

)〉
=

C
∆x

(
vi+1vj+1ρi+1δi,j − vi+1vjρi+1δi+1,j + vivjρiδi,j − vivj−1ρiδi+1,j

−vivj+1ρiδi−1,j + vivjρiδi,j − vi−1vjρi−1δi−1,j + vi−1vj−1ρi−1δi,j

)
, (47e)
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T vv
6 =

〈
(ρiδvi)

(
D∆t

∆x2
(vj+1δρj+1 + vj−1δρj−1 − 2vjδρj)

)〉
+
〈(

ρjδvj

)(D∆t

∆x2
(vi+1δρi+1 + vi−1δρi−1 − 2viδρi)

)〉
= Cρi ((vj+1〈δρj+1δvi〉+ vj−1〈δρj−1δvi〉 − 2vj〈δρjδvi)〉)

+Cρj ((vi+1〈δρi+1δvj〉+ vi−1〈δρi−1δvj〉 − 2vi〈δρiδvj)〉) , (47f)

T vv
7 =

〈
(viδρi)

(
D∆t

∆x2
(ρj+1δvj+1 + ρj−1δvj−1 − 2ρjδvj)

)〉
+
〈

(vjδρj)
(

D∆t

∆x2
(ρi+1δvi+1 + ρi−1δvi−1 − 2ρiδvi)

)〉
= Cvi(ρj+1〈δρiδvj+1〉+ ρj−1〈δρiδvj−1〉 − 2ρj〈δρiδvj〉)

+Cvj(ρi+1〈δρjδvi+1〉+ ρi−1〈δρjδvi−1〉 − 2ρi〈δρjδvi〉), (47g)

T vv
8 =

〈(
D∆t

∆x2
(vi+1δρi+1 + vi−1δρi−1 − 2viδρi)

)

×
(

D∆t

∆x2
(ρj+1δvj+1 + ρj−1δvj−1 − 2ρjδvj)

)〉
+ (same with i↔ j)

= C2vi+1(ρj+1〈δρi+1δvj+1〉+ ρj−1〈δρi+1δvj−1〉 − 2ρj〈δρi+1δvj〉)
+C2vi−1(ρj+1〈δρi−1δvj+1〉+ ρj−1〈δρi−1δvj−1〉 − 2ρj〈δρi−1δvj〉)
−2C2vi(ρj+1〈δρiδvj+1〉+ ρj−1〈δρiδvj−1〉 − 2ρj〈δρiδvj〉)

+ (same with i↔ j). (47h)

Appendix B: Errata for Part I

In [19], equation (13) should read

f+
i;n = f−i+1;n =

√
Ai;n + Ai+1;n

2∆x∆t
<i;n,
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